Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Ann Intern Med ; 176(5): 658-666, 2023 05.
Article in English | MEDLINE | ID: covidwho-2294801

ABSTRACT

BACKGROUND: Development of safe and effective SARS-CoV-2 therapeutics is a high priority. Amubarvimab and romlusevimab are noncompeting anti-SARS-CoV-2 monoclonal antibodies with an extended half-life. OBJECTIVE: To assess the safety and efficacy of amubarvimab plus romlusevimab. DESIGN: Randomized, placebo-controlled, phase 2 and 3 platform trial. (ClinicalTrials.gov: NCT04518410). SETTING: Nonhospitalized patients with COVID-19 in the United States, Brazil, South Africa, Mexico, Argentina, and the Philippines. PATIENTS: Adults within 10 days onset of symptomatic SARS-CoV-2 infection who are at high risk for clinical progression. INTERVENTION: Combination of monoclonal antibodies amubarvimab plus romlusevimab or placebo. MEASUREMENTS: Nasopharyngeal and anterior nasal swabs for SARS-CoV-2, COVID-19 symptoms, safety, and progression to hospitalization or death. RESULTS: Eight-hundred and seven participants who initiated the study intervention were included in the phase 3 analysis. Median age was 49 years (quartiles, 39 to 58); 51% were female, 18% were Black, and 50% were Hispanic or Latino. Median time from symptom onset at study entry was 6 days (quartiles, 4 to 7). Hospitalizations and/or death occurred in 9 (2.3%) participants in the amubarvimab plus romlusevimab group compared with 44 (10.7%) in the placebo group, with an estimated 79% reduction in events (P < 0.001). This reduction was similar between participants with 5 or less and more than 5 days of symptoms at study entry. Grade 3 or higher treatment-emergent adverse events through day 28 were seen less frequently among participants randomly assigned to amubarvimab plus romlusevimab (7.3%) than placebo (16.1%) (P < 0.001), with no severe infusion reactions or drug-related serious adverse events. LIMITATION: The study population was mostly unvaccinated against COVID-19 and enrolled before the spread of Omicron variants and subvariants. CONCLUSION: Amubarvimab plus romlusevimab was safe and significantly reduced the risk for hospitalization and/or death among nonhospitalized adults with mild to moderate SARS-CoV-2 infection at high risk for progression to severe disease. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases of the National Institutes of Health.


Subject(s)
COVID-19 , Adult , Humans , Female , Middle Aged , Male , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Viral , Double-Blind Method
2.
iScience ; 26(5): 106634, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2293245

ABSTRACT

A simple and robust cell culture system is essential for generating authentic SARS-CoV-2 stocks for evaluation of viral pathogenicity, screening of antiviral compounds, and preparation of inactivated vaccines. Evidence suggests that Vero E6, a cell line commonly used in the field to grow SARS-CoV-2, does not support efficient propagation of new viral variants and triggers rapid cell culture adaptation of the virus. We generated a panel of 17 human cell lines overexpressing SARS-CoV-2 entry factors and tested their ability to support viral infection. Two cell lines, Caco-2/AT and HuH-6/AT, demonstrated exceptional susceptibility, yielding highly concentrated virus stocks. Notably, these cell lines were more sensitive than Vero E6 cells in recovering SARS-CoV-2 from clinical specimens. Further, Caco-2/AT cells provided a robust platform for producing genetically reliable recombinant SARS-CoV-2 through a reverse genetics system. These cellular models are a valuable tool for the study of SARS-CoV-2 and its continuously emerging variants.

3.
Ann Intern Med ; 176(3): 348-354, 2023 03.
Article in English | MEDLINE | ID: covidwho-2256922

ABSTRACT

BACKGROUND: Although symptom and viral rebound have been reported after nirmatrelvir-ritonavir treatment, the trajectories of symptoms and viral load during the natural course of COVID-19 have not been well described. OBJECTIVE: To characterize symptom and viral rebound in untreated outpatients with mild to moderate COVID-19. DESIGN: Retrospective analysis of participants in a randomized, placebo-controlled trial. (ClinicalTrials.gov: NCT04518410). SETTING: Multicenter trial. PATIENTS: 563 participants receiving placebo in the ACTIV-2/A5401 (Adaptive Platform Treatment Trial for Outpatients With COVID-19) platform trial. MEASUREMENTS: Participants recorded the severity of 13 symptoms daily between days 0 and 28. Nasal swabs were collected for SARS-CoV-2 RNA testing on days 0 to 14, 21, and 28. Symptom rebound was defined as a 4-point increase in total symptom score after improvement any time after study entry. Viral rebound was defined as an increase of at least 0.5 log10 RNA copies/mL from the immediately preceding time point to a viral load of 3.0 log10 copies/mL or higher. High-level viral rebound was defined as an increase of at least 0.5 log10 RNA copies/mL to a viral load of 5.0 log10 copies/mL or higher. RESULTS: Symptom rebound was identified in 26% of participants at a median of 11 days after initial symptom onset. Viral rebound was detected in 31% and high-level viral rebound in 13% of participants. Most symptom and viral rebound events were transient, because 89% of symptom rebound and 95% of viral rebound events occurred at only a single time point before improving. The combination of symptom and high-level viral rebound was observed in 3% of participants. LIMITATION: A largely unvaccinated population infected with pre-Omicron variants was evaluated. CONCLUSION: Symptom or viral relapse in the absence of antiviral treatment is common, but the combination of symptom and viral rebound is rare. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Retrospective Studies , RNA, Viral
5.
Clin Infect Dis ; 2022 Jun 23.
Article in English | MEDLINE | ID: covidwho-2228289

ABSTRACT

We enrolled seven individuals with recurrent symptoms or antigen test conversion following nirmatrelvir-ritonavir treatment. High viral loads (median 6.1 log10 copies/mL) were detected after rebound for a median of 17 days after initial diagnosis. Three had culturable virus for up to 16 days after initial diagnosis. No known resistance-associated mutations were identified.

6.
Nature ; 615(7950): 143-150, 2023 03.
Article in English | MEDLINE | ID: covidwho-2185940

ABSTRACT

The SARS-CoV-2 Omicron variant is more immune evasive and less virulent than other major viral variants that have so far been recognized1-12. The Omicron spike (S) protein, which has an unusually large number of mutations, is considered to be the main driver of these phenotypes. Here we generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate, and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly owing to mutations in the receptor-binding motif; however, unlike naturally occurring Omicron, it efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although virus bearing Omicron S caused less severe disease than the ancestral virus, its virulence was not attenuated to the level of Omicron. Further investigation showed that mutating non-structural protein 6 (nsp6) in addition to the S protein was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that although the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of the S protein.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virulence Factors , Virulence , Animals , Mice , Cell Line , Immune Evasion , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Humans , COVID-19 Vaccines/immunology , Lung/cytology , Lung/virology , Virus Replication , Mutation
7.
Nat Microbiol ; 7(11): 1906-1917, 2022 11.
Article in English | MEDLINE | ID: covidwho-2087227

ABSTRACT

SARS-CoV-2 mutations that cause resistance to monoclonal antibody (mAb) therapy have been reported. However, it remains unclear whether in vivo emergence of SARS-CoV-2 resistance mutations alters viral replication dynamics or therapeutic efficacy in the immune-competent population. As part of the ACTIV-2/A5401 randomized clinical trial (NCT04518410), non-hospitalized participants with symptomatic SARS-CoV-2 infection were given bamlanivimab (700 mg or 7,000 mg) or placebo treatment. Here¸ we report that treatment-emergent resistance mutations [detected through targeted Spike (S) gene next-generation sequencing] were significantly more likely to be detected after bamlanivimab 700 mg treatment compared with the placebo group (7% of 111 vs 0% of 112 participants, P = 0.003). No treatment-emergent resistance mutations among the 48 participants who received 7,000 mg bamlanivimab were recorded. Participants in which emerging mAb resistant virus mutations were identified showed significantly higher pretreatment nasopharyngeal and anterior nasal viral loads. Daily respiratory tract viral sampling through study day 14 showed the dynamic nature of in vivo SARS-CoV-2 infection and indicated a rapid and sustained viral rebound after the emergence of resistance mutations. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest that are associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment that results in prolonged high-level respiratory tract viral loads. Assessment of viral resistance should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Mutation , Antibodies, Monoclonal
8.
JCI Insight ; 7(19)2022 10 10.
Article in English | MEDLINE | ID: covidwho-2064378

ABSTRACT

Protective immunity against SARS-CoV-2 infection after COVID-19 vaccination may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. For example, among individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.


Subject(s)
AIDS Vaccines , COVID-19 , Influenza Vaccines , Papillomavirus Vaccines , Respiratory Syncytial Virus Vaccines , SAIDS Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BCG Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Convalescence , Diphtheria-Tetanus-Pertussis Vaccine , Humans , Measles-Mumps-Rubella Vaccine , Neutralization Tests , SARS-CoV-2
9.
Cell Rep Med ; 3(7): 100678, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-2042205

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs) are among the treatments recommended for high-risk ambulatory persons with coronavirus 2019 (COVID-19). Here, we study viral culture dynamics post-treatment in a subset of participants receiving the mAb bamlanivimab in the ACTIV-2 trial (ClinicalTrials.gov: NCT04518410). Viral load by qPCR and viral culture are performed from anterior nasal swabs collected on study days 0 (day of treatment), 1, 2, 3, and 7. Treatment with mAbs results in rapid clearance of culturable virus. One day after treatment, 0 of 28 (0%) participants receiving mAbs and 16 of 39 (41%) receiving placebo still have culturable virus (p < 0.0001). Recrudescence of culturable virus is detected in three participants with emerging mAb resistance and viral RNA rebound. While further studies are necessary to fully define the relationship between shed culturable virus and transmission, these results raise the possibility that mAbs may offer immediate (household) and public-health benefits by reducing onward transmission.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Humans , SARS-CoV-2
10.
Nat Commun ; 13(1): 4931, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-2000888

ABSTRACT

Anti-SARS-CoV-2 monoclonal antibodies are mainstay COVID-19 therapeutics. Safety, antiviral, and clinical efficacy of bamlanivimab were evaluated in the randomized controlled trial ACTIV-2/A5401. Non-hospitalized adults were randomized 1:1 within 10 days of COVID-19 symptoms to bamlanivimab or blinded-placebo in two dose-cohorts (7000 mg, n = 94; 700 mg, n = 223). No differences in bamlanivimab vs placebo were observed in the primary outcomes: proportion with undetectable nasopharyngeal SARS-CoV-2 RNA at days 3, 7, 14, 21, and 28 (risk ratio = 0.82-1.05 for 7000 mg [p(overall) = 0.88] and 0.81-1.21 for 700 mg [p(overall) = 0.49]), time to symptom improvement (median 21 vs 18.5 days [p = 0.97], 7000 mg; 24 vs 20.5 days [p = 0.08], 700 mg), or grade 3+ adverse events. However, bamlanivimab was associated with lower day 3 nasopharyngeal viral levels and faster reductions in inflammatory markers and viral decay by modeling. This study provides evidence of faster reductions in nasopharyngeal SARS-CoV-2 RNA levels but not shorter symptom durations in non-hospitalized adults with early variants of SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Adult , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/therapeutic use , Humans , RNA, Viral , SARS-CoV-2
11.
Transpl Infect Dis ; : e13910, 2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1961996
13.
Open Forum Infect Dis ; 9(3): ofac022, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1758826

ABSTRACT

We assessed the ability of the BinaxNow rapid test to detect severe acute respiratory syndrome coronavirus 2 antigen from 4 individuals with Omicron and Delta infections. We performed serial dilutions of nasal swab samples, and specimens with concentrations of ≥100 000 copies/swab were positive, demonstrating that the BinaxNow test is able to detect the Omicron variant.

14.
Clin Infect Dis ; 74(6): 1081-1084, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1707490

ABSTRACT

The clinical significance of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) RNA in stool remains uncertain. We found that extrapulmonary dissemination of infection to the gastrointestinal tract, assessed by the presence of SARS-CoV-2 RNA in stool, is associated with decreased coronavirus disease 2019 (COVID-19) survival. Measurement of SARS-CoV-2 RNA in stool may have utility for clinical risk assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Feces , Gastrointestinal Tract , Humans , RNA, Viral , SARS-CoV-2/genetics
15.
Clin Infect Dis ; 74(2): 237-245, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662115

ABSTRACT

BACKGROUND: Both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection and persistent infection have been reported, but sequence characteristics in these scenarios have not been described. We assessed published cases of SARS-CoV-2 reinfection and persistence, characterizing the hallmarks of reinfecting sequences and the rate of viral evolution in persistent infection. METHODS: A systematic review of PubMed was conducted to identify cases of SARS-CoV-2 reinfection and persistence with available sequences. Nucleotide and amino acid changes in the reinfecting sequence were compared with both the initial and contemporaneous community variants. Time-measured phylogenetic reconstruction was performed to compare intrahost viral evolution in persistent SARS-CoV-2 to community-driven evolution. RESULTS: Twenty reinfection and 9 persistent infection cases were identified. Reports of reinfection cases spanned a broad distribution of ages, baseline health status, reinfection severity, and occurred as early as 1.5 months or >8 months after the initial infection. The reinfecting viral sequences had a median of 17.5 nucleotide changes with enrichment in the ORF8 and N genes. The number of changes did not differ by the severity of reinfection and reinfecting variants were similar to the contemporaneous sequences circulating in the community. Patients with persistent coronavirus disease 2019 (COVID-19) demonstrated more rapid accumulation of sequence changes than seen with community-driven evolution with continued evolution during convalescent plasma or monoclonal antibody treatment. CONCLUSIONS: Reinfecting SARS-CoV-2 viral genomes largely mirror contemporaneous circulating sequences in that geographic region, while persistent COVID-19 has been largely described in immunosuppressed individuals and is associated with accelerated viral evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/therapy , Humans , Immunization, Passive , Infant , Phylogeny , Reinfection , COVID-19 Serotherapy
16.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1649048

ABSTRACT

Isolation guidelines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are largely derived from data collected prior to the emergence of the delta variant. We followed a cohort of ambulatory patients with postvaccination breakthrough SARS-CoV-2 infections with longitudinal collection of nasal swabs for SARS-CoV-2 viral load quantification, whole-genome sequencing, and viral culture. All delta variant infections in our cohort were symptomatic, compared with 64% of non-delta variant infections. Symptomatic delta variant breakthrough infections were characterized by higher initial viral load, longer duration of virologic shedding by PCR, greater likelihood of replication-competent virus at early stages of infection, and longer duration of culturable virus compared with non-delta variants. The duration of time since vaccination was also correlated with both duration of PCR positivity and duration of detection of replication-competent virus. Nonetheless, no individuals with symptomatic delta variant infections had replication-competent virus by day 10 after symptom onset or 24 hours after resolution of symptoms. These data support US CDC isolation guidelines as of November 2021, which recommend isolation for 10 days or until symptom resolution and reinforce the importance of prompt testing and isolation among symptomatic individuals with delta breakthrough infections. Additional data are needed to evaluate these relationships among asymptomatic and more severe delta variant breakthrough infections.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/genetics , COVID-19/metabolism , SARS-CoV-2/physiology , Virus Replication , Virus Shedding/physiology , Adult , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , Time Factors
17.
J Infect Dis ; 224(11): 1821-1829, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545975

ABSTRACT

BACKGROUND: Data on pediatric coronavirus disease 2019 (COVID-19) has lagged behind adults throughout the pandemic. An understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral dynamics in children would enable data-driven public health guidance. METHODS: Respiratory swabs were collected from children with COVID-19. Viral load was quantified by reverse-transcription polymerase chain reaction (RT-PCR); viral culture was assessed by direct observation of cytopathic effects and semiquantitative viral titers. Correlations with age, symptom duration, and disease severity were analyzed. SARS-CoV-2 whole genome sequences were compared with contemporaneous sequences. RESULTS: One hundred ten children with COVID-19 (median age, 10 years [range, 2 weeks-21 years]) were included in this study. Age did not impact SARS-CoV-2 viral load. Children were most infectious within the first 5 days of illness, and severe disease did not correlate with increased viral loads. Pediatric SARS-CoV-2 sequences were representative of those in the community and novel variants were identified. CONCLUSIONS: Symptomatic and asymptomatic children can carry high quantities of live, replicating SARS-CoV-2, creating a potential reservoir for transmission and evolution of genetic variants. As guidance around social distancing and masking evolves following vaccine uptake in older populations, a clear understanding of SARS-CoV-2 infection dynamics in children is critical for rational development of public health policies and vaccination strategies to mitigate the impact of COVID-19.


Subject(s)
COVID-19 , Viral Load , Adolescent , COVID-19/diagnosis , COVID-19/pathology , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Pandemics , SARS-CoV-2/genetics , Young Adult
19.
Clin Infect Dis ; 74(7): 1275-1278, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1345718

ABSTRACT

The impact of coronavirus disease 2019 vaccination on viral characteristics of breakthrough infections is unknown. In this prospective cohort study, incidence of severe acute respiratory syndrome coronavirus 2 infection decreased following vaccination. Although asymptomatic positive tests were observed following vaccination, the higher cycle thresholds, repeat negative tests, and inability to culture virus raise questions about their clinical significance.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Health Personnel , Humans , Incidence , Prospective Studies , SARS-CoV-2 , Vaccination
20.
Genet Epidemiol ; 45(7): 685-693, 2021 10.
Article in English | MEDLINE | ID: covidwho-1279364

ABSTRACT

SARS-CoV-2 mortality has been extensively studied in relation to host susceptibility. How sequence variations in the SARS-CoV-2 genome affect pathogenicity is poorly understood. Starting in October 2020, using the methodology of genome-wide association studies (GWAS), we looked at the association between whole-genome sequencing (WGS) data of the virus and COVID-19 mortality as a potential method of early identification of highly pathogenic strains to target for containment. Although continuously updating our analysis, in December 2020, we analyzed 7548 single-stranded SARS-CoV-2 genomes of COVID-19 patients in the GISAID database and associated variants with mortality using a logistic regression. In total, evaluating 29,891 sequenced loci of the viral genome for association with patient/host mortality, two loci, at 12,053 and 25,088 bp, achieved genome-wide significance (p values of 4.09e-09 and 4.41e-23, respectively), though only 25,088 bp remained significant in follow-up analyses. Our association findings were exclusively driven by the samples that were submitted from Brazil (p value of 4.90e-13 for 25,088 bp). The mutation frequency of 25,088 bp in the Brazilian samples on GISAID has rapidly increased from about 0.4 in October/December 2020 to 0.77 in March 2021. Although GWAS methodology is suitable for samples in which mutation frequencies varies between geographical regions, it cannot account for mutation frequencies that change rapidly overtime, rendering a GWAS follow-up analysis of the GISAID samples that have been submitted after December 2020 as invalid. The locus at 25,088 bp is located in the P.1 strain, which later (April 2021) became one of the distinguishing loci (precisely, substitution V1176F) of the Brazilian strain as defined by the Centers for Disease Control. Specifically, the mutations at 25,088 bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Since the mutations alter amino acid coding sequences, they potentially imposing structural changes that could enhance viral infectivity and symptom severity. Our analysis suggests that GWAS methodology can provide suitable analysis tools for the real-time detection of new more transmissible and pathogenic viral strains in databases such as GISAID, though new approaches are needed to accommodate rapidly changing mutation frequencies over time, in the presence of simultaneously changing case/control ratios. Improvements of the associated metadata/patient information in terms of quality and availability will also be important to fully utilize the potential of GWAS methodology in this field.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Brazil , Genome-Wide Association Study , Humans , Mutation , Phylogeny , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL